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1Queen Mary, University of London, School of Mathematical Sciences,
Mile End Road, London E1 4NS, UK, e-mail: b.bogacka@qmul.ac.uk
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Summary

The paper concerns a problem of finding powerful experimental designs in
order to discriminate between two alternative nonlinear multivariate dynamic
mixed-effects statistical models. The T-optimality criterion developed for fixed
models with heteroscedastic errors is generalized and used after linearization of
the candidate models by Taylor series expansion around the mean value of the
parameters. The relevant equivalence theorem is proved. A numerical algorithm
for finding optimal designs based on a Wynn-type iterative procedure is con-
structed. T-optimum designs for discrimination between two pharmacokinetic
multiresponse models are calculated as an example.
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1. Introduction

The model discrimination problem is an important part of statistical
inference. There exist two main approaches to model discrimination, one
based on hypothesis testing, e.g., likelihood ratio tests or goodness-of-fit
tests (Lehmann and Romano, 2005), the second based on information the-
ory and information criteria, such as Akaike and Bayes Information Cri-
teria, respectively (see the monograph by Burnham and Anderson, 2002).
Also, a chosen sampling plan (design) may influence the result of model
discrimination. Thus, in this context, various criteria for designing experi-
ments were considered in the literature (Box and Hill, 1967; Atkinson and
Fedorov, 1975a; Fedorov and Khabarov, 1986; Ponce de Leon and Atkin-
son, 1991; Felsenstein, 1992; Müller and Ponce de Leon, 1996; Stewart,
Shon and Box, 1998).
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In this paper we consider the criterion called T-optimality, introduced
in Atkinson and Fedorov (1975a) for two competing single response models,
and then extended in Atkinson and Fedorov (1975b) for several competing
models. For two competing linear models a T-optimum design provides
the most powerful F-test for the lack of fit of one model when the other is
assumed to be true. When the models are non-linear in the parameters, the
exact F-test is replaced by an asymptotic one. In recent years, the criterion
has been generalized to the case of nonlinear dynamic models (described
by ordinary differential equations or partial differential equations) and also
for heteroscedastic errors (see, e.g., Uciński and Bogacka, 2004; Uciński
and Bogacka, 2005; Kuczewski, 2006; Kuczewski, Baranowski and Uciński,
2006). However, to the best of our knowledge, only fixed-effects models
have been considered so far.

Mixed-effects models, in which some or all parameters are assumed
to be random variables, are widely used in areas such as clinical trials,
in particular in the so-called population pharmacokinetics and pharmaco-
dynamics (Dawidian and Giltinan, 1995; Demidenko, 2004; Pinheiro and
Bates, 2000; Lindsey, 2001). The interest is in a “mean model” and its so-
called population parameters for a sample population of subjects (patients),
rather than for individual cases.

Methods of parameter and variance component estimation for such
models are well developed, see, e.g., Searle, Casella and McCulloch (1992),
Pinheiro and Bates (2000), also the article by Yuh, Beal, Davidian, Har-
rison, Hester, Kowalski, Vonesh and Wolfinger (1994) providing a bibliog-
raphy survey up to 1994. The design of experiments for precise estima-
tion of the population parameters have been developed for such models.
These are mainly D-optimum designs (see, e.g., Mentré, Mallet and Bac-
car, 1997; Jones and Wang, 1999; Retout, Duffull and Mentré, 2001; Retout
and Mentré, 2003; Gagnon and Leonov, 2005; Patan and Bogacka, 2007).
There is also some statistical literature on the Bayesian experimental design
for such models (Han and Chaloner, 2004).

In contrast to the above topics, the model discrimination problem has
attracted much less attention. Waterhouse, Woods, Eccleston and Lewis
(2006) introduce product D-optimum population designs and claim that
in many cases this strategy is efficient for both parameter estimation and
model discrimination purposes. However, especially for non-linear models,
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it may happen that the discrimination efficiency for such a design may be
rather low when compared with a T-optimum one. In some situations it
may be more efficient to first establish a correct model and then continue
the experiment designed for parameter estimation.

In this paper we propose a method for computing T-optimum designs
in order to discriminate between two competing population multiresponse
models. In Section 2 we introduce the relevant notation for such models,
present their linearized forms and define a generalized T-criterion comple-
mented with its justification. In Section 3 we give a necessary and suffi-
cient condition for a design to be T-optimum (Theorem 1). In Section 4
we present optimum designs for discriminating between two pharmacoki-
netic models. We conclude our work and give some discussion in Section 5.
Details of the algorithm are given in the appendix.

2. Problem formulation

We consider a nonlinear, multi-response mixed-effects statistical model.
The observations yij ∈ Rd of process responses are described by

yij = η(ti;λij) + εij , i = 1, . . . , n, j = 1, . . . , ri, (1)

where η : R→ Rd is a nonlinear function with respect to the parameters λ,
ti ∈ R is the explanatory variable (here a time instant of a measurement),
ti 6= tκ whenever i 6= κ, n is the number of different time points and ri

is the number of replications at ti. The total number of observations is∑n
i=1 ri = N .
We assume that the model parameter λij is a realization of a p-dimen-

sional normal random vector such that

λij = θ + ϑij (2)

and

E
(
λij

)
= θ, Var

(
λij ,λκ`

)
=

{
Ω(θ,α) if i = κ and j = `,

0p×p otherwise,
(3)

where θ is called the population mean, Ω(θ,α) ∈ Rp×p is a positive-definite
symmetric matrix depending on θ and, possibly, on an additional vector of
constant parameters α ∈ Rq.
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Terms εij represent random errors of measurements. We assume that
the errors are normally distributed and for given λij and λκ` we have

E
(
εij

)
= 0d, Var

(
εij , εκ`

)
=

{
V (ti,θ,β) if i = κ and j = `,

0d×d otherwise,
(4)

where 0d and 0d×d are, respectively, the d-dimensional vector and the (d×
d)-dimensional matrix of zeros, V (ti,θ,β) ∈ Rd×d is a positive-definite
matrix, possibly depending on an additional vector of constant parameters
β ∈ Rr.

The properties (3) and (4) yield the observations independent in time,
but correlated among the responses at a given ti.

In what follows, we consider the situation in which we are given two
competing heteroscedastic random-effects model structures

M1 :
(
η1(ti,λ

(1)
ij ), Ω1(θ1,α1), V1(ti,θ1,β1)

)
(5)

and
M2 :

(
η2(ti,λ

(2)
ij ), Ω2(θ2,α2), V2(ti,θ2,β2)

)
(6)

as candidate models for an unknown structure M :
(
η(ti,λij), Ω(θ,α),

V (ti,θ,β)
)
. The parameters of the competing models follow the assump-

tions of the form (2) - (4).
In order to determine a sampling schedule which would maximize the

power of the test for lack of fit of model η2 against η1 we extend the T-
optimality criterion developed for the heteroscedastic setting in Uciński and
Bogacka (2004). For this purpose, we apply the first-order expansion of η
around the random effects’ mean (the approximation is reasonably accurate
provided that the dispersion of the λij ’s is small). Thus, Eqn. (1) can be
approximated by (Dawidian and Giltinan, 1995, Ch. 6)

yij ≈ η(ti;θ) +
∂η(ti;θ)

∂θ
ϑij + εij , i = 1, . . . , n, j = 1, . . . , ri. (7)

Then we have

E(yij) ≈ η(ti;θ), Var
(
yij ,yκ`

)
=

{
W (ti,θ,α,β) if i = κ & j = `,

0d×d otherwise,
(8)
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where

W (ti,θ,α,β) ≈ ∂η(ti;θ)
∂θ

Ω(θ,α)
(

∂η(ti;θ)
∂θ

)T

+ V (ti,θ,β). (9)

Observe that after such approximation we have a mixed-effects marginal
model which is nonlinear with respect to θ but is linear with respect to the
random effects ϑij (Demidenko, 2004). Matrix W depends on both the
expectation, θ, and the dispersion, Ω, of the random effects λij , as well as
on the dispersion V of the additive errors. W is positive definite.

Defining γ =
[
θT,αT,βT

]T as the vector of all population parameters,
we can rewrite (7) as

yij ≈ η(ti;θ) + εij , i = 1, . . . , n, j = 1, . . . , ri, (10)

where

E
(
εij

)
= 0d, Var

(
εij , εκ`

)
=

{
W (ti,γ) if i = κ and j = `,

0d×d otherwise,
(11)

where W (ti,γ) has the form given by (9).
Consequently, the approximation (10) with properties (11) is a model

equivalent to a fixed-effects multi-response nonlinear model with heterosce-
dastic errors. The competing models M1 and M2 can then be written as:

M1 : E(yij) ≈ η1(t, θ1), Var(yij) ≈W1(ti,γ1),
M2 : E(yij) ≈ η2(t, θ2), Var(yij) ≈W2(ti,γ2),

(12)

where γ` =
[
θT

` ,αT
` ,βT

`

]T ∈ Γ` ⊂ Rp`+q`+r` , ` = 1, 2, denote vectors of
constant but unknown parameters (Γ1 and Γ2 denote some known compact
sets). Matrices W`, ` = 1, 2, are defined as in (9).

If we postulate that model M1 is true, i.e., W (t, γ) = W1(t, γ0
1),

η(t, θ) = η1(t, θ0) for some known γ0
1 (which may have been inferred from

some prior experiments) the discrimination between models given by (12)
can be performed based on a design ξ?

N maximizing the following general-
ization of the T-optimality criterion over a set of designs ξN :

T 0
12(ξN ) = min

γ2∈Γ2

J0
12(ξN ,γ2), (13)
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where

J0
12(ξN ,γ2) =

n∑
i=1

wig(ti,γ2), (14)

g(t,γ2) =Φ
(
W−1

2 (t, γ2)W (t)
)

+ [η(t)− η2(t, θ2)]TW−1
2 (t, γ2)[η(t)− η2(t, θ2)]

(15)

and

Φ(A) = trace(A)− ln det(A). (16)

For simplicity of notation we omitted the dependencies of η and W on θ
and γ, respectively, since these two parameters are assumed to be known
and fixed for the true model.

An important property of the function Φ( · ) is that it is strictly convex
on the set of all symmetric positive-definite (d × d)-dimensional matrices,
cf. (Uciński and Bogacka, 2004, Lemma 1).

The normalized N -observation exact design ξN has the following stan-
dard form:

ξN
def=

{
t1, t2, . . . , tn
w1, w2, . . . , wn

}
, (17)

where wi = ri/N and
n∑

i=1
wi = 1. We denote the set of support points

t1, . . . , tn by supp ξN .
A rationale for the criterion (13) is the following. Assume that ModelM1

is true for a given parameter vector γ0
1 , and that γ0

2 is a possible value of pa-
rameter γ2 inM2. Moreover, for simplicity, assume that we have N distinct
support points, all associated with equal weights wi = 1/N , i = 1, . . . , N .
Discrimination between the two competing models (12) can be viewed as
testing the following simple hypothesis:

H0 : η(ti) = η1(ti,θ0
1), W (ti) = W1(ti,γ0

1), i = 1, . . . , N, (18)

against the alternative

H1 : η(ti) = η2(ti,θ0
2), W (ti) = W2(ti,γ0

2), i = 1, . . . , N. (19)
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Since the disturbances ε are approximately Gaussian and independent for
different ti’s, the log-likelihood ratio function is given by

L = ln


N∏

i=1
(2π)−

d
2 |W1(ti)|−

1
2 exp

(
−1

2 [yi − η1(ti)]TW−1
1 (ti)[yi − η1(ti)]

)
N∏

i=1
(2π)−

d
2 |W2(ti)|−

1
2 exp

(
−1

2 [yi − η2(ti)]TW−1
2 (ti)[yi − η2(ti)]

)


(20)

= −1
2

N∑
i=1

ln |W−1
2 (ti)W1(ti)| −

1
2

N∑
i=1

[yi − η1(ti)]TW−1
1 (ti)[yi − η1(ti)]

+
1
2

N∑
i=1

[yi − η2(ti)]TW−1
2 (ti)[yi − η2(ti)],

where the abbreviated notation η`(ti) ≡ η`(ti,θ0
` ) and W`(ti) ≡W`(ti, γ0

` ),
` = 1, 2, is applied.

Then

2 E[L] = −E

[
N∑

i=1

ln |W−1
2 (ti)W1(ti)|

]
︸ ︷︷ ︸

Term I

− E

[
N∑

i=1

[yi − η1(ti)]TW−1
1 (ti)[yi − η1(ti)]

]
︸ ︷︷ ︸

Term II

+ E

[
N∑

i=1

[yi − η2(ti)]TW−1
2 (ti)[yi − η2(ti)]

]
︸ ︷︷ ︸

Term III

.

(21)

The explanation of the form of function g in the criterion (13) comes from
the three terms indicated in the above formula, as follows:

1. Term I is the expectation of a constant, hence it is equal to

N∑
i=1

ln |W−1
2 (ti)W1(ti)|.
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2. Under the null hypothesis we have that yi − η1(ti) ∼
H0

N (0,W1(ti)).

Then, applying the formula for the expectation of a quadratic form,
which says that for any vector random variable z such that E[z] = µ,
Var(z) = V and for any symmetric constant matrix A of appropri-
ate dimension, the expected value of a quadratic form zTAz can be
written as, (Searle, 1971, Ch. 2):

E(zTAz) = trace(AV ) + µTAµ, (22)

it follows that Term II reduces to
N∑

i=1

trace
(
W−1

1 (ti)W1(ti)
)

= Nd.

3. Similarly as above, here we have yi−η2(ti) ∼
H0

N (η1(ti)−η2(ti),W1(ti))

and from (22) it follows that Term III simplifies to
N∑

i=1

trace
(
W−1

2 (ti)W1(ti)
)
+

N∑
i=1

[η1(ti)−η2(ti)]TW−1
2 (ti)[η1(ti)−η2(ti)].

Summarizing and dropping index of the true model we get

2 E[L] =
N∑

i=1

trace
(
W−1

2 (ti)W (ti)
)
−

N∑
i=1

ln |W−1
2 (ti)W (ti)|

+
N∑

i=1

[η(ti)− η2(ti)]TW−1
2 (ti)[η(ti)− η2(ti)]−Nd

= N
(
J0

12(ξN ,γ0
2)− d),

where ξN is a uniform discrete N -point design. Thus, given N , the expected
value of the likelihood ratio, which quantifies the discrepancy between both
models, is proportional to J0

12(ξN ,γ0
2). The explanation follows the same

arguments if the design ξN is not uniform.
Further we relax the original optimization problem (13) and consider

an experimental design ξ as a continuous probability measure. It gives the
following continuous generalization of the optimality criterion:

T12(ξ) = min
γ2∈Γ2

J12(ξ, γ2) (23)
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for

J12(ξ,γ2) =
∫

T
g(t, γ2) ξ(dt), (24)

where T = [tmin, tmax] is a time interval within which observation instants
may be scheduled.

A probability measure

ξ? = arg max
ξ∈Ξ(T )

T12(ξ) (25)

is called the locally T12-optimum design in the set of all probability mea-
sures ξ over T denoted by Ξ(T ).

3. Characterization of optimum solutions

In this section we present theoretical results for which we assume the
following:

(A1) T and Γ2 are compact sets.

(A2) η( · ) and W ( · ) are continuous functions on T .

(A3) η2( · , · ) and W2( · , · ) are continuous functions on T × Γ2.

Then T12-optimum designs fulfil the equivalent condition given in the fol-
lowing:

Theorem 1 (Equivalence Theorem for T12-optimum designs). As-
sume that the minimization problem (23) possesses a unique solution γ?

2 ∈
Γ2 for a measure ξ?. Under Assumptions (A1)–(A3) a necessary and suf-
ficient condition for ξ? ∈ Ξ(T ) to be T12-optimum is

g(t, γ?
2) ≤ T12(ξ?), ∀t ∈ T. (26)

The equality in (26) is attained at all support points of ξ?. Furthermore,
the set of all optimal measures ξ? is convex.
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Proof. First we examine the one-sided directional derivative of T12 defined
by (23). The continuity of η and η2, together with the Bounded Conver-
gence Theorem (Rao, 1987, Cor. 6, p. 161), yield the continuity of the
mappings

(α, γ2) 7→ J12(ξ + αδξ, γ2) (27)

and

(α, γ2) 7→
∂J12

∂α
(ξ + αδξ, γ2). (28)

The directional differentiability property of a max (or equivalently min)
function of the form f(x) = max

y∈Y
ϕ(x, y) given, e.g., by Theorem 3.3 of

(Pshenichnyi, 1971) or Theorem 5.4.7 of (Polak, 1997), states that

δf(x0; δx) = max
y∈Ȳ (x0)

δϕ(x0,y; δx), (29)

where Ȳ (x0) = {y ∈ Y : f(x) = ϕ(x,y)} (it is sometimes called the an-
swering set). It means that the one-sided directional derivative δf(x0; δx)
is equal to the largest (or equivalently smallest for min functions) of the
directional derivatives of the functions x 7→ ϕ(x,y) that are ‘active’ at x0,
i.e. for which there exists y0 ∈ Y such that ϕ(x0,y0) = f(x0).

This result applied to the T12 function implies that

δT12(ξ; δξ) = min
γ2∈Γ2(ξ)

δJ12(ξ,γ2; δξ), (30)

where

Γ2(ξ) =
{

γ̄2 ∈ Γ2 : γ̄2 = arg min
γ2∈Γ2

J12(ξ, γ2)
}

, (31)

and δJ12(ξ,γ2; δξ) stands for the one-sided differential of J12 at ξ with
increment δξ, γ2 is interpreted as a fixed parameter.

By the assumption of the theorem, for an optimal design ξ?, i.e. the
one which maximizes T12(ξ), the set Γ2(ξ?) consists of only one point γ?

2 ,
and therefore

δT12(ξ?; δξ) = δJ12(ξ,γ?
2 ; δξ) =

∫
T

g(t, γ?
2) δξ(dt). (32)
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Putting δξ = ξ − ξ?, we get

δT12(ξ?; ξ − ξ?) =
∫

T
g(t, γ?

2) ξ(dt)−
∫

T
g(t, γ?

2) ξ?(dt)︸ ︷︷ ︸
T12(ξ?)

. (33)

Finally, since
∫
T T12(ξ?) ξ(dt) = T12(ξ?), we can write

δT12(ξ?; ξ − ξ?) =
∫

T
ϕ(t, ξ?) ξ(dt), (34)

where

ϕ(t, ξ?) = g(t, γ?
2)−

∫
T

g(t, γ?
2) ξ?(dt)︸ ︷︷ ︸

T12(ξ?)

. (35)

It follows that

max
ξ∈Ξ(T )

δT12(ξ?; ξ − ξ?) = max
ξ∈Ξ(T )

∫
T

ϕ(t, ξ?) ξ(dt). (36)

Note, that the criterion T12 is concave due to the linearity of J12 in ξ. Hence
the optimality of the design ξ? implies that (36) must be nonpositive for
any ξ ∈ Ξ(T ) (Uciński, 2005, Thm. B. 25, p. 266). Note, however, that we
have ∫

T
ϕ(t, ξ?) ξ?(dt) = 0 (37)

what forces the nonnegativity of the maximum on the right-hand side of
(36). From this we see that the optimality of ξ? is equivalent to

max
ξ∈Ξ(T )

∫
T

ϕ(t, ξ?) ξ(dt) = 0. (38)

It is easy to check that the last condition is satisfied if, and only if,

max
ξ∈Ξ(T )

ϕ(t, ξ?) = 0, (39)



12 B. Kuczewski, B. Bogacka, D. Uciński

i.e. in (38) it suffices to restrict attention to one-point measures ξ = { t
1 }.

This gives (26).
Condition (38) is sufficient, too. In fact, for a fixed γ2 ∈ Γ2, J12 in

(24) is a linear function of ξ, and hence T12 becomes concave (Uciński,
2005, Thm. B. 21, p. 265), which means that the necessary condition (38)
becomes sufficient as well.

We also claim that the mapping t 7→ ϕ(t, ξ?) attains its maximum value
of zero at all the support points of ξ?. Indeed, suppose that this were false.
Then, we could find a set T ′ ⊂ supp ξ? and a scalar a such that∫

T ′
ϕ(t, ξ?) ξ?(dt) ≤ a < 0 (40)

and

ϕ(t, ξ?) = 0 for t ∈ supp ξ? \ T ′. (41)

But this would yield∫
T

ϕ(t, ξ?) ξ?(dt) ≤ a < 0 (42)

which contradicts (37).
It remains to show that the set of all optimal measures ξ? is convex. But

this is immediate, since mapping ξ 7→ T12(ξ) is concave. This completes
the proof.

This theorem is very useful for several reasons. First of all, it provides
a tool for checking whether a numerically computed optimum design is in-
deed optimum; secondly, it helps a numerical procedure to find an optimal
solution; thirdly, it can also be used for finding intervals around the opti-
mum support points which produce a high efficiency of the design. Such
intervals, the so-called efficient windows, give a practitioner some flexibility
in selecting the times of taking measurements, while keeping high design
efficiency, see Bogacka, Johnson, Jones and Volkov (2008).

4. Computational example

As an example, we consider two competing compartmental models de-
scribing pharmacokinetics of intraconazole drug in patients with Cystic
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Fibrosis (for details of the development of statistical models in medical
applications see, e.g., Lindsey, 2001). This example was also analyzed in
Waterhouse, Redmann, Duffull and Eccleston (2005), where the authors use
a D-optimum product criterion in order to calculate a population design.

The expected response of the first model (assumed as the ‘true’ one in
our experiment) is a solution of the following non-linear ODE set:

dA1

dt
= −F12kaA1 − F14kaA1,

dA2

dt
= F12kaA1 +

Q

V3
A3 −

Q

V2
A2 − F24

CL24

V2
A2 − F20

Vmax

Km + A2/V2
A2,

dA3

dt
=

Q

V2
A2 −

Q

V3
A3,

dA4

dt
= F14kaA1 + F24

CL24

V2
A2 −

CL4

V4
A4,

(43)

whereas the alternative model is obtained from the following set of linear
ODE:

dA1

dt
= −F12kaA1 − F14kaA1,

dA2

dt
= F12kaA1 +

Q

V3
A3 −

Q

V2
A2 − F24

CL24

V2
A2 − F20

CL2

V2
A2,

dA3

dt
=

Q

V2
A2 −

Q

V3
A3,

dA4

dt
= F14kaA1 + F24

CL24

V2
A2 −

CL4

V4
A4,

(44)

where A1, A2, A3 denote the amount of intraconazole in the gut, central
and peripheral compartments, respectively, and A4 stands for the amount
of intraconazole metabolite (hydroxyintraconazole). Table 1 contains a de-
scription of the model parameters, whereas Fig. 1 presents the two possible
kinetics of the drug, see Waterhouse et al. (2005). Note that the solutions
A1–A4 of these sets of differential equations are nonlinear with respect to
the parameters.
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Table 1. Interpretation of model parameters and constant values.

Unit Interpretation
ka [h−1] absorbtion rate
F12 - fraction of parent in the gut absolute bioavail-

ability
F14 - fraction of metabolite after first pass metabolism
F24 - fraction of parent converted to metabolite
F20 - fraction of parent eliminated
CL2 [L/h] clearance of itraconazole
CL4 [L/h] clearance of metabolite
CL24 [L/h] clearance of itraconazole by metabolism to hy-

droxyitraconazole
Q [L/h] inter-compartmental clearance
Vmax [mg/(mL·h)] theoretical maximum rate of the process
Km [mg/mL] Michaelis-Menten constant
V2 [L] volume of central compartment
V4 [L] volume of metabolite compartment
V3 [L] volume in peripheral compartment

.

Experimental conditions used for calculation of ξ?
mixed were set as fol-

lows:

– For both models the initial conditions are A1(0) = 200mg (dose),
A2(0) = A3(0) = A4(0) = 0.

– In both models some of the parameters are treated as known con-
stants. These are F12 = 0.55, F4 = 0.043, F24 = F20 = 0.5, V3 = 307,
CL24 = 1.07, Q = 46, Vmax = 0.00954 and Km = 0.329.

– For both models we assume that Ω` = ω
`
diag{θ1`

, . . . , θp`
} and

ε ∼ N (0, σ2
constId + σ2

`
V`(t, θ`)), σ2

const = 0.005,
V`(t, θ`) = diag{A1(t,θ`), A2(t, θ`), A3(t,θ`), A4(t, θ`)}, ` = 1, 2.

– The ‘true’ model population parameter vector is
γ0

1 = [ka1 , V21 , V41 , CL41 , ω1 , σ
2
1
]T = [0.945, 365.0, 23.0, 1.75, 0.05, 0.05]T.

– For the alternative model the population parameter vector is
γ2 = [ka2 , V22 , V42 , CL42 , CL22 , ω2 , σ

2
2
]T ∈ Γ2, where
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Figure 1. Scheme of the compartmental model of the pharmacokinetics of itraconazole
and hydroxyitraconazole.

Γ2 = [0.9, 1.1] × [360.0, 370.0] × [20.0, 25.0] × [1.6, 2.0] × [1.0, 7.0] ×
[0.025, 0.075]× [0.025, 0.075].

– The design range is T = [0, 48].

For comparison, the T-optimum design ξ?
fixed (for the same models, pa-

rameter values and ranges) under the assumption of no random effects and
ε ∼ N (0d, σ

2Id) was also calculated (with σ2 = 1). Under this assump-
tion, obviously, γ2 ≡ θ2 and the term (15) simplifies to g(ti,θ2) = ‖η(ti)−
η2(t1,θ2)‖2 (see, e.g., Uciński and Bogacka, 2005; Kuczewski et al., 2006).

Additionally, a series of mixed-effects designs ξj?
mixed, j = 1, . . . , 5, were

computed in order to investigate the influence of variance terms on the
resultant design (for the same values and ranges of the fixed-effects pa-
rameters θ1 and θ2, but different combinations of values and ranges of the
parameters ωi , σ

2
i
, i = 1, 2). For this designs, the experimental conditions

were set as follows:

– ξ1
mixed: ω1 = σ2

1 = 0.5, [ω2, σ
2
2] ∈ [0.25, 0.75]× [0.25, 0.75],

– ξ2
mixed: ω1 = σ2

1 = 5.0, [ω2, σ
2
2] ∈ [2.5, 7.5]× [2.5, 7.5],
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– ξ3
mixed: ω1 = σ2

1 = 50.0, [ω2, σ
2
2] ∈ [25.0, 75.0]× [25.0, 75.0],

– ξ4
mixed: ω1 = 5.0, σ2

1 = 0.5, [ω2, σ
2
2] ∈ [2.0, 5.0]× [0.25, 0.75],

– ξ5
mixed: ω1 = 50.0, σ2

1 = 0.5, [ω2, σ
2
2] ∈ [20.0, 50.0]× [0.25, 0.75].

Also the T-efficiencies of the fixed-effects design in reference to each
particular mixed-effects design were calculated as follows:

Teff

(
ξ?
fixed, ξ

?
mixed

)
=

J12

(
ξ?
fixed,γ

?
2mixed

)
J12

(
ξ?
mixed,γ

?
2mixed

) . (45)

Actually, it is a generalized counterpart of T b
eff from (Waterhouse, Eccleston

and Duffull, 2004).
Computer programs were implemented in Lahey-Fujitsu Fortran 95

compiler v.5.6, additionally using some of the routines from the IMSL li-
brary. The direct differentiation method (Uciński, 2005) was used in order
to calculate sensitivity coefficients ∂η(ti;θ)/∂θ. The computation of the
designs (with tolerance δ varying from 0.001 up to 0.005) took from 3 to
4 hours, depending on the considered case (fixed or mixed effect), on a 1.7
GHz PC Pentium 4 with 512GB of RAM. This is due to an unavoidable
cost paid for the necessity of using global optimization. For a discussion of
the algorithm see the appendix and comments in Section 5.

The designs obtained for mixed- and fixed-effects models, respectively,
are the following:

ξ?
mixed =

{
11.0030, 48.0
0.0589, 0.9411

}
, ξ?

fixed =
{

13.1171, 48.0
0.7106, 0.2894

}
The most competitive values of the alternative model parameters ob-

tained in the optimization procedure are

γ?
2mixed

= [0.9337, 364.1804, 22.2013, 1.6660, 6.0070︸ ︷︷ ︸
θ?
2mixed

, 0.0360, 0.0447],

θ?
2fixed

= [0.9441, 365.3012, 22.2884, 1.6950, 5.9152].

Moreover, T-efficiency Teff

(
ξ?
fixed, ξ

?
mixed

)
= 0.9975.

Regarding the additional mixed-effects designs, the results are the fol-
lowing:
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ξ1?
mixed =

{
0.3363, 48.0
0.1136, 0.8864

}
, ξ2?

mixed =
{

0.4805, 48.0
0.2135, 0.7865

}
,

ξ3?
mixed =

{
0.3363, 5.9670, 48.0
0.1573, 0.0449, 0.7978

}
, ξ4?

mixed =
{

7.5435, 48.0
0.1251, 0.8749

}
,

ξ5?
mixed =

{
48.0
1.0

}
,

γ1?
2mixed

= [0.9249, 364.2665, 22.2073, 1.6001, 5.9750,0.3276,0.4540],
γ2?

2mixed
= [0.9334, 364.9910, 23.0203, 1.6000, 5.7314,3.3092,4.5486],

γ3?
2mixed

= [0.9399, 360.0025, 23.7860, 1.7022, 2.5162,37.4291,42.1687],
γ4?

2mixed
= [0.9159, 366.0529, 24.9959, 1.6004, 5.5250,2.1115,0.5210],

γ5?
2mixed

= [0.9276, 364.3781, 24.2408, 1.6002, 1.2532,25.9694,0.5998],

Teff

(
ξ?
fixed, ξ

1?
mixed

)
= 0.9830, Teff

(
ξ?
fixed, ξ

2?
mixed

)
= 0.9808,

Teff

(
ξ?
fixed, ξ

3?
mixed

)
= 0.9850, Teff

(
ξ?
fixed, ξ

4?
mixed

)
= 0.9230,

Teff

(
ξ?
fixed, ξ

5?
mixed

)
= 0.8710.

We can see that the most competitive values of parameters θ for the
alternative model are similar in both mixed- and fixed-effects models (an
exception occurs for ξ3?

mixed and ξ5?
mixed in the case of parameter CL22).

Also, comparing ξ?
fixed and ξ?

mixed (computed for relatively small values
of variance terms), we observe that the support points for the two cases
are similar. The weights, however, are very different, putting almost all
experimental effort at the end of the region in the mixed-effects case.

It is a hallmark of the T-optimum criterion that it puts the support
points where there is a large distance between the competing models. Here
the main difference between the two kinetics is in the clearance of intra-
conazole, which has more effect on the expected model responses at the end
of the design region than at the beginning. When the clearance parameter
Cl2 is treated as a random variable, it introduces additional variability,
which is higher at the end of the design region. This is a possible reason
why there is such a high weight put on t = 48.0 in the mixed model, while it
is much smaller (but still important) in the fixed model (it can be observed
in all computed mixed-effects designs, since the smallest weight obtained
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for t = 48.0 equals 0.7865). Note that a similar behaviour, i.e. changes in
weight values when increasing the variance of a random coefficient, was in-
dicated by Schmelter, Benda and Schwabe (2006) in the case of D-optimum
designs for a simple linear model with random slope.

As can be observed, when comparing ξ?
mixed with ξi?

mixed, i = 1, 2, 3, an
increase in variance term values results in a radical change in the location
of the first support point or even adds a third point into the design (in
the case of ξ3?

mixed). However, when we take a look at the T-efficiencies, we
can conclude that practically, the fixed-effects design ξ?

fixed is as efficient
as mixed-effects designs ξ?

mixed, ξ
1?
mixed to ξ3?

mixed in discrimination between
our mixed-effects models. Such a strange behaviour is probably caused by
the fact that in the computation scenario the variance of the additional
Gaussian noise σ2

1 was equal to the parameter ω1 defining the variance of
the random parts of the parameters θ.

The situation changes, however, when the variance of the additional
Gaussian noise is considerably smaller than that of ω1 (designs ξ4?

mixed and
ξ5?
mixed). Now we observe that, when the value of the parameter ω increases,

the T-efficiency of the fixed-effects design with respect to the particular
mixed-effects design decreases. However, the efficiency is still relatively
high (e.g., 0.8710 for ξ5?

mixed). Again, it is worth pointing out that such a
behaviour coincides with the results obtained by Schmelter et al. (2006).
Finally, we observe further changes in the location of the first support point,
up to its dropping for ξ5?

mixed (however, the resulting one-point design is
singular from the viewpoint of parameter estimation).

Plots (shown in Fig. 2) aiming at checking the optimality condition
given in Theorem 1 do confirm the optimality of the computed designs.

5. Conclusions and Discussion

In order to minimize the indispensable computational burden, we re-
stricted our attention to the basic case of T-optimality considering two
competing multi-response models. The results can be easily extended to
discrimination between three or more competing models, cf. Atkinson and
Fedorov (1975b). We also made the strong assumption about the correct-
ness of the first model, which may not be realistic and, moreover, requires
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Figure 2. Sensitivity function g(t, γ?
2 ) vs support location (vertical lines) obtained

for fixed-effects design ξ?
fixed (a) and for the mixed-effects design ξ?

mixed (b), ξ1?
mixed (c),

ξ2?
mixed (d), ξ3?

mixed (e), ξ4?
mixed (f). This function identifies the optimum solution.
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the knowledge of its, at least initial, parameter estimates. However, with
some technical alterations and, unfortunately, a substantial increase in the
computational cost, the approach can be extended to incorporate prior
distributions for the truth of the postulated models (cf. Ponce de Leon
and Atkinson (1991) providing the approach which, to some extent, also
provides a solution to the parameter uncertainty problem, producing the
so-called robust designs).

Another important issue concerns the efficiency of parameter estima-
tion, which is usually rather low for T-optimum designs. There exist a
number of approaches partially overcoming this drawback and providing
a reasonable balance between parameter estimation and model discrimi-
nation. They base mainly on using or combining D-optimality with other
criteria. The most common are (Atkinson, 2008; Waterhouse et al., 2004):
DT-optimality, product D-optimality and hybrid designs (e.g., combining
D- and T-optimum designs computed separately).

First of all, we have to notice that there exist situations, in which the
experimenter’s attention is focused on the discrimination efficiency without
any compromise in the direction of parameter estimation efficiency. Such a
situation often takes place when it is of primary importance to establish the
type of the process when the model represents a physical phenomenon and
its form gives the experimenter information about the process; for example
if it is a reversible or a non-reversible chemical reaction.

Using DT-optimality, we can control the level of balance between the
parameter estimation and discrimination efficiency or we can look for the
design maximizing product of both the efficiencies; see, e.g. Atkinson,
Donev and Tobias (2007) or Kuczewski (2006). But we have to remember
that D-optimality concerns only the first of the models (the ‘true’ one).

A different situation takes place in the case of product D-optimum de-
signs. It seems that they may provide quite reasonable discrimination ef-
ficiency, but at the cost of the necessity of providing initial estimates for
both the models. Secondly, there are suggestions, based on empirical re-
sults, see, e.g. Waterhouse et al. (2004), that the usefulness of this approach
for both the goals strongly depends on particular circumstances, mainly on
the phenomenon under investigation and its models being considered.

At last, hybrid designs lose the compactness and the valuable prop-
erty of the minimal size of the design produced by the aforementioned
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methods. Thus, there exists no universal solution and a natural exten-
sion of further research heads towards a more thorough comparison of the
proposed method with other existing approaches and combining it with
the approaches increasing the parameter estimation efficiency mentioned
above.

Regarding the problem of the design sensitivity with respect to the pa-
rameters γ0

1 , it has to be emphasized that its direct analytical analysis is
highly complicated by the non-differentiability of the criterion. However, it
is obvious that the resultant design strongly depends on the random part
of γ (see examples and remarks in the previous section). The same depen-
dence takes place in the case of parameters θ, but our practical experience
shows that its intensity correlates with the degree of the model nonlinearity
with respect to the parameters θ.

The T-optimum design criterion is introduced under the assumption
of normally distributed observations. Recently, López-Fidalgo, Tommasi
and Trandafir (2007) proposed a new criterion based on the notion of
Kullback-Leibner distance called KL-optimality. It is useful for discriminat-
ing between rival models with non-normally, e.g., log-normally or gamma,
distributed observations (see the comprehensive monograph by Burnham
and Anderson (2002) for application of information-based criteria, e.g., the
Akaike Information Criterion, in model selection). They showed that differ-
ent cases of the T-optimality may be considered as particular cases of the
KL-optimality. Thus, KL-optimality seems to be a natural direction of fur-
ther investigations in the considered case of mixed-effects models. However,
even in the case of non-trivial fixed-effect models (e.g., the models which
do not posses analytical solutions), computation of the KL distance (which
involves calculation of the integral over the sample space of the possible
observations) requires an immense increase in the computational burden.
Moreover, one of the rival models must still be assumed as a true one.

The proposed approach can be directly applied to population pharma-
cokinetic studies when all subjects follow the same observational scheme. A
further development of the method for groups of subjects following different
designs would also be interesting.

Regarding the numerical algorithm (see Appendix), we have to address
the convergence issues. As was already indicated in Fedorov and Hackl
(1997, p. 95), the classical sequential Wynn-Fedorov algorithm tailored to
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optimize the T-optimality criterion may suffer from the lack of convergence
if a global minimizer for

min
θ2∈Θ2

∫
T
‖η(t)− η2(t,θ2)‖2 ξ(dt), (46)

(which has to be solved when computing T12(ξ) for the fixed-effects models)
is not unique. The same situation takes place concerning our generalized
problem of

min
γ2∈Γ2

∫
T

g(t, γ2) ξ(dt). (47)

Although this phenomenon has been well known for many years, no viable
alternative for this scheme has been proposed in the optimum experimental
design literature up to recent days. The only improvements recommended
in Fedorov and Hackl (1997) concern some kind of regularization. Namely,
the authors suggest to replace successive designs ξk by ξ̄k = (1−γ)ξk +γξ̄,
where 0 < γ � 1 and ξ̄ is a regular design, i.e., the design for which the
minimization problem (46) possesses a unique solution. But this is only a
vague hint whose utility has never been formally proved and it can only
be qualified as a heuristic. Kuczewski (2006) and Uciński and Kuczewski
(2006) proposed a relaxation procedure which is robust to the presence
of non-unique minimizers for (46). They also proved its convergence in a
finite number of steps. The same work gives also a generalization of the
Equivalence Theorem for T-optimum designs in the case of the existence
of non-unique minimizers for the problem (46). Proceeding in much the
same way, its counterpart for the situation considered in this paper can be
developed.

Appendix

Details of numerical algorithm

The equivalence theorem proved in Section 3 lets us to adopt the classical
iterative scheme of Wynn-Fedorov type (Wynn, 1970), which was recom-
mended by Atkinson and Fedorov (1975a) for construction of T-optimum
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designs for static single-output systems and since then generalized for the
case of dynamic multivariate models (see, e.g., Kuczewski et al., 2006). The
numerical algorithm can be represented by the following steps (nk stands
for size of the design in the k-th step):

Algorithm 1 (Generalized Wynn-Fedorov algorithm for T12-optimum
designs).

Step 1: Guess an initial design ξ0 of the form ξ0 =
{

t01, . . . , t0n0

w0
1, . . . , w0

n0

}
for

some arbitrary n0. Choose some positive tolerance δ � 1. Set k = 0.

Step 2: Determine

γ̂k
2 = arg min

γ2∈Γ2

nk∑
i=1

wk
i g(tki ,γ2),

t̂k = arg max
t∈T

g(t, γ̂k
2 ).

(48)

Step 3: If g(t̂k, γ̂k
2 ) ≤ T12(ξk) + δ, then ξ? = ξk and STOP. Otherwise go

to Step 4.

Step 4: Choose the appropriate value of αk, 0 ≤ αk ≤ 1, and compute the
convex combination of designs:

ξk+1 = (1− αk)ξk + αkδ(t̂k), (49)

where δ(t̂k) is the design concentrated only at one support point t̂k.
Set k ← k + 1 and go to Step 2.

In contrast to the D-optimality criterion, even in the single response
case, selection of an optimum value of the steplength αk, i.e., finding

αk = arg max
α∈[0,1]

T12((1− α)ξk + αδ(t̂k)),

requires a numerical search. A simple search procedure, e.g., the golden
section method (Press, Teukolsky, Vetterling and Flannery, 1996) can be
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used. Alternatively, like in the D-optimality case, another common choice
is

αk =
1

k + 1
(50)

or, in general, αk can be chosen using any sequence satisfying the conditions
(Fedorov and Hackl, 1997)

lim
k→∞

αk = 0,

∞∑
k=0

αk =∞,

∞∑
k=0

(αk)2 <∞. (51)

Generally, the convergence speed of the presented scheme is rather low,
since it actually belongs to the group of first-order algorithms. In practice,
the optimum support points are usually found relatively quickly (when
using efficient global optimizers during Step 2 of the algorithm), but a
precise determination of the corresponding weights takes much more time.
In the statistical literature there have been some attempts to modify the
basic scheme to enhance the convergence speed (Fedorov and Hackl, 1997).
The resulting heuristics are intended mainly for the D-optimum design
criterion, but with minor changes they can be adapted to the T-optimum
criterion (see Kuczewski, 2006).

For example, one of the characteristic features of the algorithm is that
the weights of the non-optimal support points gradually decrease. This
eventually results in the existence of support points with negligible weights.
Moreover, in each iteration a new support point is included into the design.
Usually, after several iterations, the location of the new points becomes
similar or very close to the existing ones. This is caused by the numeri-
cal inaccuracies of the optimization process. In order to obtain minimal-
support solutions it is worthwhile to equip the implementation with proce-
dures aimed at removing support points with negligible weights from the
current design and also replacing clustered points by a single support point.
The weights of the points to be replaced are added in each cluster and the
clustered points are substituted by only one point with the weight equal
to the resulting sum. Then removing points with negligible weights can be
performed. The thresholds defining a maximal radius of the clusters (and,
consequently, the number of the replaced points) and a minimum accept-
able weight should be set a priori. The appropriate choice can speed up the
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convergence, but it may happen that by setting excessively high thresholds
we will obtain the effect of repeatedly removing and adding the same points
into the design (and, consequently, the lack of the convergence). In the case
of D-optimality a useful test exists (Pronzato, 2003) which allows for a safe
removal of points which have no chance to be located in the optimum de-
sign. Unfortunately, there is no such counterpart here and the appropriate
thresholds need to be chosen empirically.

A vital role in the iterative algorithm presented in this section is played
by an efficient global optimization method (global optimization problems
have to be solved in Step 2 of the algorithm). Since common nonlinear
programming algorithms are known to converge to local optima, we have
turned our attention to a stochastic optimization method called the adap-
tive random search (ARS), which is widely used in the engineering optimiza-
tion literature (Walter and Pronzato, 1997). Based on numerous computer
experiments it was found that this extremely simple strategy is especially
suited for the purpose of global optimization problems in calculating T-
optimum designs.

Originally, the algorithm solves a maximization problem max
x∈X

J(x) for

an admissible set X being a hypercube.
The ARS does not use the information about the gradient of the per-

formance index. Thus a significant numerical efficiency could hardly be
expected. However, because of its valuable properties regarding global con-
vergence and simplicity, the ARS seems to be more flexible and suitable in
the case of dynamic systems than many other classical non-linear program-
ming methods. Furthermore, gradient evaluation can be very costly or the
approximation of the gradient may fail to be satisfactory (e.g., there may
occur some scaling problems or insufficient smoothness of the underlying
functions). Nevertheless, the performance of the ARS can be improved by
combination with various other methods, so occasionally we can switch to
local maximization in order to make the results more accurate.

Concerning computation complexity of the ARS algorithm, it is, like
the majority of global optimization algorithms, polynomial of higher order
(Spall, 2003). Thus, an increase in the number of parameters will result in
a considerable increase in the run time.
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Legend

1 Interpretation of models parameters and constant values (after Waterhouse et al., 2005).
2 Scheme of the compartmental model of the pharmacokinetics of itraconazole and hy-

droxyitraconazole (after Waterhouse et al., 2005).
3 Sensitivity function g(t, γ?

2 ) vs support location (vertical lines) obtained for fixed-effects
models design ξ?

fixed (a) and for the mixed-effects models design ξ?
mixed (b), ξ1?

mixed

(c), ξ2?
mixed (d), ξ3?

mixed (e), ξ4?
mixed (f) indicates the optimum solution.


